

$$
t_{t}^{t} \mathrm{CH} \quad 12.2+\frac{t}{t}
$$

$$
+966500040660
$$

Vectors

A vector is a quantity that has both a magnitude and direction; represented by an arrow; denoted by a boldface letter " v " or an arrow over a letter " \vec{v} "; has initial point " A " (the tail) and terminal point " B " (the tip).

$$
\vec{v}=\overrightarrow{A B}, B
$$

Components of a vector
Each rector has components that are denoted as follows,

$$
\begin{aligned}
& \langle a, b\rangle, \text { in } \mathbb{R}^{2} \\
& \langle a, b, c\rangle, \text { in } \mathbb{R}^{3}
\end{aligned}
$$

Don't confuse it with the notation of a point " $(a, b, c)^{\text {" }}$.
Now, say there were points " $A\left(x_{0}, y_{0}, z_{0}\right)^{\prime}$ and " $B\left(x_{1}, y_{1}, z_{1}\right)$ " where

$$
x_{1}=a+x_{0}, \quad y_{1}=b+y_{0}, \quad z_{1}=c+z_{0}
$$

As mentioned previosly, a vector has a terminal point and an initial point. In our case, let "A" be the initial point, and " B " be the terminal.

To determine the components of " \vec{v} ",

$$
\begin{gathered}
a=x_{1}-x_{0}, b=y_{1}-y_{0}, \quad c=z_{1}-z_{0} \\
\vec{v}=\left\langle x_{1}-x_{0}, y_{1}-y_{0}, z_{1}-z_{0}\right\rangle
\end{gathered}
$$

By the same logic, if a vector's tail is the origin point then.

$$
\begin{gathered}
a=x_{1}-0, b=y_{1}-0, \quad c=z_{1}-0 \\
a=x_{1}, \quad b=y_{1}, \quad c=z_{1} \\
\vec{v}=\left\langle x_{1}, y_{1}, z_{1}\right\rangle
\end{gathered}
$$

Magnitude of a vector

Let there be a vector " \vec{v}^{*} with tail " P_{0} " and tip " P_{1} ", where,

$$
\vec{v}=\langle a, b, c\rangle, P_{0}=\left(x_{0}, y_{0}, z_{0}\right), P_{1}=\left(x_{1}, y_{1}, z_{1}\right)
$$

To compute the length of " \vec{v}^{\prime}, we need to figure out the distance from " P_{0} " to " P_{1} ".

$$
\left|P_{0} P_{1}\right|=\sqrt{\left(x_{1}-x_{0}\right)^{2}+\left(y_{1}-y_{0}\right)^{2}+\left(z_{1}-z_{0}\right)^{2}}
$$

Recall that,

$$
\begin{gathered}
a=x_{1}-x_{0}, b=y_{1}-y_{0}, c=z_{1}-z_{0} \\
\vec{v}=\left\langle x_{1}-x_{0}, y_{1}-y_{0}, z_{1}-z_{0}\right\rangle \\
=\langle a, b, c\rangle
\end{gathered}
$$

Therefore,
Note: the length of a
vector is denoted by either $\quad|\vec{v}|=\sqrt{(a)^{2}+(b)^{2}+(c)^{2}}$ $|\vec{v}|$ or $\|\vec{v}\|$.

Summing vectors

Let there be two vectors " \vec{v} " and " \vec{u} ' where " \vec{v} " tip is at the tail of " \vec{u} ".

$$
\vec{v}=\langle a, b, c\rangle, \quad \vec{u}=\langle d, e, f\rangle
$$

The sum of ' \vec{v} ' and ' \vec{u} ' would result in a vector that begins from the tail of ' \vec{v} ' and ends at the tip of ' \vec{u} ".

$$
\vec{v}+\vec{u}=\langle a+d, b+e, c+f\rangle
$$

Subtracting vectors

Let there be two vectors ' \vec{v} " and ' \vec{u} ' where ' \vec{v} " tip is at the tail of " \vec{u} ".

$$
\vec{v}=\langle a, b, c\rangle, \vec{u}=\langle d, e, f\rangle
$$

Then vector subtracting vector ' \vec{v} " from ' \vec{u} ' would be the same as summing $" \vec{v}$ " and " \vec{u} '.

$$
\vec{u}-\vec{v}=\vec{u}+(-\vec{v})
$$

Multiplying vectors by scalar
Let " k " be a scalar, and " \vec{v} " a vector. Then " \vec{v} " is called a scalar multiplication.

$$
k \vec{v}=k\langle a, b, c\rangle=\langle k a, k b, k c\rangle
$$

If " $k>0$ ", then

If " $k<0$ ", then
$\stackrel{\rightharpoonup}{v}$
$-\frac{1}{2} \vec{v} /$

$$
-2 \vec{v}
$$

If " $k=0$ ", then

$$
\vec{v}
$$

$0 \cdot \vec{v}$

Properties of vectors

1) $\vec{v}+\vec{u}=\vec{u}+\vec{v}$
2) $(\vec{v}+\vec{u})+\vec{w}=\vec{v}+(\vec{u}+\vec{w})$
3) $\vec{v}+0=\vec{v}$
4) $\vec{v}+(-\vec{v})=0$
5) $k \cdot(\vec{v}+\vec{u})=k \vec{v}+k \vec{u}$
6) $\vec{v} \cdot(k+g)=k \vec{v}+g \vec{v}$
7) $(k \cdot g) \cdot \vec{v}=k \cdot(\vec{v} \cdot g)$
8) $1 \vec{v}=\vec{v}$

Standard basis vectors
The vectors " \vec{i} ", " \vec{j} ", and " \vec{k} " are called the standard basis vectors and point in the directions of the positive x, y, and z-axis

$$
\vec{i}=\langle 1,0,0\rangle, \vec{j}=\langle 0,1,0\rangle, \vec{k}=\langle 0,0,1\rangle
$$

These standard vectors allow us to rewrite vectors

$$
\vec{v}=\langle a, b, c\rangle=a_{i}+b_{j}+c_{k}
$$

Unit vectors

A unit vector is a vector with a length of 1 .
Any vector becomes a unit vector if it is diviced by its own length.

$$
\vec{u}=\frac{1}{\|\vec{v}\|} \cdot \vec{v}
$$

