Three-dimensional coordinate systems

In a two-dimensional coordinate system, a point is represented by an ordered pair of real numbers (a, b), where " a " is associated with the x-axis, and " b ' is associated with the y-axis.

In a three-dimensional coordinate system, we add a third real number (a, b, c). " c " is associated with the z-axis.

This type of represention of points is called the Cartesian product:

For two-divensions:

$$
R \times R:\{(x, y) \in R\} \text {, denoted by "R". }
$$

For three-dirensions:

$$
R \times R \times R:\{(x, y, z) \in R\} \text {, denoted by "R". }
$$

Note: the graph of an equation in " $R^{2 "}$ is called a curve. In R^{33}, it is culled a surface.

Distance

Let there be points " P_{0}^{\prime} and ' P_{1} ", where " P_{0} is at ($\left.x_{0}, y_{0}, z_{0}\right)^{n}$, and ${ }_{1} P_{1}^{\prime \prime}$ is at " $\left(x_{1}, y_{1}, z_{1}\right)^{*}$.

We can make it from point "P." to " P_{1} " by moving in parallel directions to each axis.

By observing, it is apperant that we can draw right angled triangles. Also, let's name point ' $(1,2,6)^{\prime} A^{\prime}$ ', and point ${ }^{(4)}(5,2,6)^{\prime \prime}$ " ${ }^{3}$ ".

$$
\left|P_{0} A\right|=\left|z_{1}-z_{0}\right| \quad|A B|=\left|x_{1}-x_{0}\right| \quad\left|B P_{1}\right|=\left|y_{1}-y_{0}\right|
$$

The distance from "P. to "P. would the hypotenuse of the triangle $\angle P B P$.

$$
\left|P_{0} P_{1}\right|^{2}=\left|P_{0} B\right|^{2}+\left|B P_{1}\right|^{2}
$$

The distance from " P_{1} " to " B " would the hypotenuse of the triangle $\angle P_{1} A B$

$$
|P \cdot B|^{2}=\left|P_{0} A\right|^{2}+|A B|^{2}
$$

Replacing " $|P \cdot B|^{2 n}$ with its value in the equation of the distance from "P." to "Pi".

$$
\begin{aligned}
\left|P_{0} P_{1}\right|^{2} & =\left|P_{0} B\right|^{2}+\left|B P_{1}\right|^{2} \\
& =\left|P_{0} A\right|^{2}+|A B|^{2}+\left|B P_{1}\right|^{2}
\end{aligned}
$$

Then we square root both sides,

$$
\left|P_{0} P_{1}\right|=\sqrt{\left|P_{0} A\right|^{2}+|A B|^{2}+\left|B P_{1}\right|^{2}}
$$

After replacing the variables with their values,

$$
=\sqrt{\left|z_{1}-z_{0}\right|^{2}+\left|x_{1}-x_{0}\right|^{2}+\left|y_{1}-y_{d}\right|^{2}}
$$

Since they are being squared, there is no need for the absaloute value,

$$
\left|P_{0} P_{1}\right|=\sqrt{\left(z_{1}-z_{0}\right)^{2}+\left(x_{1}-x_{0}\right)^{2}+\left(y_{1}-y_{0}\right)^{2}}
$$

Spheres
Recall the equation of a circle,

Now, all we have to do to turn a circle into a sphere is add the " z " component into the equation

$$
(x-h)^{2}+(y-k)^{2}+(z-l)^{2}=r^{2}
$$

