Arrays and Matrices in MATLAB

EE 201

Session Agenda

\square Contact before work 5 min.
\square Arrays and Matrices in MATLAB 70 min.

Class Learning Objectives

\square Achieve Comprehension LOL of Arrays and Matrices in MATLAB.

Creating Numeric Matrix

\square We can create numeric array using: a- Square bracket
b- Colon operator

Square bracket([])

\square Row Vetor:The elements of the row must be separated by commas or

spaces.

\square Example:

\square Column Vector:
The elements of the Column must be separated by:
-semicolon or use the
-transpose notation(')
which converts a row vector into a column vector or vice versa.
For example:

Colon Operator(:)

\square The colon operator generates a sequence of numbers that you can use in creating or indexing into Matrices.
\square Numeric Sequence Range
Generate a sequential series of regularly spaced numbers from
first to last using the syntax first:last. For an incremental
sequence from 6 to 17 , use:
$\mathrm{N}=6: 17$

Example:

Command Window

>> $\mathrm{N}=6: 17$
$\mathrm{N}=$
Columns 1 through 11
$\begin{array}{lllllllllll}6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16\end{array}$

Column 12

17
$\gg N=[6: 17]$
$\mathrm{N}=$

Columns 1 through 11
$\begin{array}{lll}6 & 7 & 8\end{array}$
10
11
12
13
14
15
16
Column 12

17

Colon Operator(:)

\square Numeric Sequence Step

Generate a sequential series of numbers, each number separated by a step value, using the syntax :
first:step:last.
For a sequence from 2 through 38, stepping by 4 between each entry, use:
$A=2: 4: 38$

Example:

Commend Window

>> $A=2: 4: 38$

linspace command

\square The linspace command also creates a linearly spaced row

vector, but instead you specify the number of values rather than the increment.

The syntax is linspace $\left(\mathbf{x}_{1}, x_{2}, \mathbf{n}\right)$, where x_{1} and x_{2} are the lower and upper limits and n is the number of points.
-For example, linspace $(5,8,31)$ is equivalent to $[5: 0.1: 8$].
-If n is omitted, generates a row vector of 100 linearly equally
spaced points between X_{1} and x_{2}.

logspace command

\square The logspace command creates an array of logarithmically spaced elements.
\square Its syntax is logspace (a, b, n), where n is the number of points between 10^{a} and 10^{b}.

For example, $\mathrm{x}=\operatorname{logspace}(-1,1,4)$ is
$\mathrm{x}=[0.1000,0.4642,2.1544,10.000]$.
If n is omitted, the number of points defaults to 50 .

Vector Index

- Vector index, points to a particular element in the array.
- It uses to know the value of element in the vector.
Example:
Use MATLAB to compute $\mathrm{w}=5$ sinu for $u=0,0.1,0.2 \ldots . .10$ and determine the value of the seventh element in the vector u and W.

Solution of example


```
>- u47!
=\r1:=
    ローGロロロ
\M m!7!
=1エ=
    2.B2 32
```


Matrices

\square A matrix has multiple rows and columns. For example, the matrix

$$
M=\left[\begin{array}{ccc}
2 & 4 & 10 \\
16 & 3 & 7 \\
4 & 5 & 9 \\
11 & 21 & 1
\end{array}\right]
$$

has four rows and three columns.
\square Vectors are special cases of matrices having one row or one column.

Creating Matrices

\square If the matrix is small you can type it row by row, separating the elements in a given row with spaces or commas and separating the rows with semicolons. For example, typing:
>>A=[2,4,10;16,3,7];
\square creates the following matrix:

$$
A=\left[\begin{array}{rrr}
2 & 4 & 10 \\
16 & 3 & 7
\end{array}\right]
$$

\square Remember, spaces or commas separate elements in different columns, whereas semicolons separate elements in different rows.

Creating Matrices from Vectors

\square Suppose $a=[1,3,5]$ and $b=[7,9,11]$ (row vectors). Note the difference between the results given by:
[ab] and $[a ; b]$ in the following session:
$\mathrm{c}=$
$\gg \mathrm{c}=\left[\begin{array}{ll}\mathrm{a} & \mathrm{b}\end{array}\right]$

$$
\begin{gathered}
\gg d=[a ; b] \\
d=
\end{gathered}
$$

1357911
135
7911

The Matrix in MATLAB

Columns (n)						
$A=$	1	2	3	4	5	
	4^{1}	10^{6}	$1{ }^{11}$	6^{16}	$2{ }^{21}$	- $\mathrm{A}(2,4)$
Rows (m) 3	82	1.27	912	417	222	
	7.23	58	713	118	123	A (17)
4	04	0.59	414	519	524	
5	23^{5}	83^{10}	13^{15}	0^{20}	12^{25}	Rectangular Matrix: Scalar: 1-by-1 array
Vector: m-by-1 array$\mathrm{A}=5 \times 5 \text { matrix. }$1-by-n arrayMatrix: m-by-n array						

Array Addressing

$\square \mathrm{v}(:)$ represents all the row or column elements of the vector v .
$\square \quad \mathrm{v}(2: 5)$ represents the second through fifth elements; that is $\mathrm{v}(2), \mathrm{v}(3), \mathrm{v}(4), \mathrm{v}(5)$
$\square \quad \mathrm{A}(3,:)$ denotes all the elements in the third Row of the matrix A
$\square \mathrm{A}(:, 2)$ denotes all the elements in the Second column of the matrix A
$\square \mathrm{A}(:, 2: 5)$ denotes all the elements in the second through fifth columns of A .
$\square \quad \mathrm{A}(2: 3,1: 3)$ denotes all the elements in the second and third rows that are also in the first through third columns.
\square You can use array indices to extract a smaller array from another array. For example, if you first create the array
B.

$$
\mathbf{B}=\left[\begin{array}{cccc}
2 & 4 & 10 & 13 \\
16 & 3 & 7 & 18 \\
8 & 4 & 9 & 25 \\
3 & 12 & 15 & 17
\end{array}\right]
$$

\square then type $\mathbf{C}=\mathbf{B}(2: 3,1: 3)$, you can produce the following array:

$$
\mathbf{C}=\left[\begin{array}{ccc}
16 & 3 & 7 \\
8 & 4 & 9
\end{array}\right]
$$

Array Subscripting / Indexing

A(1:5,5)
$A(:, 5)$
A(21:25)
A(1:end,end)
A(:, end)
A(21:end)'

EMPTY ARRAY

\square The empty(null) array contains no elements and is expressed as [].
L Rows and columns can be deleted by setting the selected row or column equal to the null array, for example:
$-\mathrm{A}(3,:)=[]$ deletes the third row in A
$\mathrm{A}(1: 4,:)=[]$ delete the first 4 rows in A
$-A([14],:)=[]$ deletes the first row and fourth rows of A
$A(:,[14])=[]$ deletes the first column and fourth column of A
Let $A=\left[\begin{array}{lll}6 & 9 & 4 \\ 1 & 5 & 7\end{array}\right]$
$-A(1,5)=3$ changes matrix to: $A=\left[\begin{array}{lllll}6 & 9 & 4 & 0 & 3 \\ 1 & 5 & 7 & 0 & 0\end{array}\right]$
$\mathrm{A}(1,4: 5)=3 \quad--4^{\text {th }}$ and $5^{\text {th }} \quad$ Elements in $1^{\text {st }}$ row of A is 3
$A(1: 2,3)=5 \ldots 3^{\text {rd }}$ Element of $1^{\text {st }}, 2^{\text {nd }}$ row of A is 5
Extract the last two rows and colums

$$
-\mathrm{B}=\mathrm{A}(:, 5:-1: 1) \square \mathrm{B}=\left[\begin{array}{ccccc}
3 & 0 & 4 & 9 & 6 \\
0 & 0 & 7 & 5 & 1
\end{array}\right]
$$

$$
\text { -suppose } \mathrm{C}=[-4,12,3,5,8], \quad \mathrm{B}(2,:)=\mathrm{C}
$$

$$
B=\left[\begin{array}{ccccc}
3 & 0 & 4 & 9 & 6 \\
-4 & 12 & 3 & 5 & 8
\end{array}\right]
$$

$$
\text { -suppose } \mathrm{D}=[3,8,5 ; 2,-6,9], \quad \mathrm{E}=\mathrm{D}([2,2,2],:)
$$

$$
E=\left[\begin{array}{lll}
2 & -6 & 9 \\
2 & -6 & 9 \\
2 & -6 & 9
\end{array}\right]
$$

