

EE 201

C3-2 2022

Session Agenda

Contact before work

5 min.

Arrays and Matrices in MATLAB 70 min.

Class Learning Objectives

Achieve Comprehension LOL of Arrays and Matrices in MATLAB.

Creating Numeric Matrix

- □ We can create numeric array using:
- a- Square bracket
- b- Colon operator

Square bracket([])

- Row Vetor: The elements of the row must be separated by <u>commas</u> or
 - spaces.

DE	Examp	ole:				
Co	mmar	nd Win	dow			
	>> x	=[1,3	3,5,7]			
	× =					
		1	З	5	7	
	>> x	=[1 3	357]			
	× =					
		ı	З	5	7	
			C3-2	2022		

5

ommand Window
>> x=[1;3;5;7]
x = 1
3 5 7
>> x=[1 3 5 7]'
x =
1 3 5
sa.

Colon Operator(:)

- □ The colon operator **generates a sequence** of numbers that you can use in **creating** or **indexing** into Matrices.
- Numeric Sequence Range

Generate a sequential series of regularly spaced numbers from first to last using the syntax **first:last**. For an incremental sequence from 6 to 17, use:

N = 6:17

Example:

Co	mmand Win	dow									→ I □	~ ×	
	>> N=6:1	7											
	N =												
	Columns	s 1 thr	cough 1	1									
	6	7	8	9	10	11	12	13	14	15	16		
	Column	12											
	17												
	>> N=[6:3	17]											
	N =												
	Columns	s 1 thr	cough 1	.1									
	6	7	8	9	10	11	12	13	14	15	16		
	Column	12											
	17												
					C3-2		2022					8	

Colon Operator(:)

Numeric Sequence Step

Generate a sequential series of numbers, each number separated by a step value, using the syntax :

first:step:last.

For a sequence from 2 through 38, stepping by 4 between each entry, use:

A = 2:4:38

Example:

C٥	mma	nd Wind	ow									+ □	X 5	
	>> 7	A=2:4:3	38											
	A =													
		2	6	10	14	18	22	26	30	34	38			
	>> I	A=[2:4:	38]											
	A =													
		2	6	10	14	18	22	26	30	34	38			

C3-2 2022

linspace command

- The linspace command also creates a linearly spaced row vector, but instead you specify the number of values rather
 - than the increment.
- The syntax is **linspace** (x_1, x_2, n) , where x_1 and x_2 are the lower and upper limits and n is the number of points.
- -For example, linspace (5,8,31) is equivalent to [5:0.1:8].
 -If n is omitted, generates a row vector of 100 linearly equally spaced points between x₁ and x₂.

logspace command

□ The logspace command creates an array of

logarithmically spaced elements.

- \Box Its syntax is logspace(a,b,n), where n is the number
 - of points between 10^a and 10^b .
- For example, x=logspace(-1,1,4) is
- x=[0.1000,0.4642, 2.1544,10.000].

If n is omitted, the number of points defaults to 50.

Vector Index

- Vector index, points to a particular element in the array.
- It uses to know the value of element in the vector .

Example:

Use MATLAB to compute w=5sinu for u=0,0.1,0.2....10 and determine the value of the seventh element in the vector u and w.

Solution of example

>> $u=[0:0.1:10];$
>> w=5*sin(u);
>> u(7)
ans =
0.6000
≻> w(7)
ans =
2.8232

Matrices

A matrix has multiple rows and columns. For example, the matrix

$$\mathsf{M} = \begin{bmatrix} 2 & 4 & 10 \\ 16 & 3 & 7 \\ 4 & 5 & 9 \\ 11 & 21 & 1 \end{bmatrix}$$

has four rows and three columns.
 Vectors are special cases of matrices having one row or one column.

Creating Matrices

- If the matrix is small you can type it row by row, separating the *elements* in a given row with *spaces* or *commas* and separating the *rows* with semicolons. For example, typing:
- >>A=[2,4,10;16,3,7];
- □ creates the following matrix:
 - $A = \begin{bmatrix} 2 & 4 & 10 \\ 16 & 3 & 7 \end{bmatrix}$
- Remember, spaces or commas separate elements in different *columns*, whereas semicolons separate elements in different *rows*.

Creating Matrices from Vectors

Suppose a= [1,3,5] and b=[7,9,11] (row vectors). Note the difference between the results given by:
 [a b] and [a; b] in the following session:
 >c=[a b]
 d=
 1357911
 135
 7911

The Matrix in MATLAB

Array Addressing

- \Box v(:) represents all the row or column elements of the vector v.
- \Box v(2:5) represents the second through fifth elements; that is v(2), v(3), v(4), v(5)
- \Box A(3,:) denotes all the elements in the third Row of the matrix A
- \Box A(:,2) denotes all the elements in the Second column of the matrix A
- \Box A(:,2:5) denotes all the elements in the second through fifth columns of A.
- A(2:3,1:3) denotes all the elements in the second and third rows that are also in the first through third columns.

You can use array indices to extract a smaller array from another array. For example, if you first create the array

B.
$$\mathbf{B} = \begin{bmatrix} 2 & 4 & 10 & 13 \\ 16 & 3 & 7 & 18 \\ 8 & 4 & 9 & 25 \\ 3 & 12 & 15 & 17 \end{bmatrix}$$

□ then type **C**=**B**(2:3,1:3), you can produce the following array: $\mathbf{C} = \begin{bmatrix} 16 & 3 & 7 \\ 8 & 4 & 9 \end{bmatrix}$

C3-2 2022

EMPTY ARRAY

The empty(null) array contains no elements and is expressed as [].

Rows and columns can be deleted by setting the selected row or column equal to the null array, for example:

-A(3,:)=[] deletes the third row in A

A(1:4,:)=[] delete the first 4 rows in A

-A([1 4],:)=[] deletes the first row and fourth rows of A

A(:,[1 4])=[] deletes the first column and fourth column of A

Let $A = \begin{bmatrix} 6 & 9 & 4 \\ 1 & 5 & 7 \end{bmatrix} \begin{bmatrix} 6 & 9 & 4 & 0 & 3 \\ 1 & 5 & 7 & 0 & 0 \end{bmatrix}$ -A(1,5)=3 changes matrix to: $A = \begin{bmatrix} 6 & 9 & 4 & 0 & 3 \\ 1 & 5 & 7 & 0 & 0 \end{bmatrix}$ A(1,4:5)=3 -- 4th and 5th Elements in 1st row of A is 3 A(1:2,3)=5--- 3rd Element of 1st, 2nd row of A is 5 Extract the last two rows and columns

$$-B=A(:,5:-1:1) \longrightarrow B = \begin{bmatrix} 3 & 0 & 4 & 9 & 6 \\ 0 & 0 & 7 & 5 & 1 \end{bmatrix}$$

-suppose C=[-4,12,3,5,8], B(2,:)=C

$$\mathbf{B} = \begin{bmatrix} 3 & 0 & 4 & 9 & 6 \\ -4 & 12 & 3 & 5 & 8 \end{bmatrix}$$

-suppose D=[3,8,5;2,-6,9], E=D([2,2,2],:)

$$\mathbf{E} = \begin{bmatrix} 2 & -6 & 9 \\ 2 & -6 & 9 \\ 2 & -6 & 9 \end{bmatrix}$$