Basic operations in Matlab

EE 201

Scalar Arithmetic Operations

Name of operation	Operation in Calculus	Operation in MATLAB	Symbol
Multiplication	$\mathrm{ab}(\mathrm{a} \times \mathrm{b})$	$\mathrm{a} * \mathrm{~b}$	$*$
Right division	$\frac{\mathrm{a}}{\mathrm{b}}(\mathrm{a} \div \mathrm{b})$	a / b	$/$
Addition	$\mathrm{a}+\mathrm{b}$	$\mathrm{a}+\mathrm{b}$	+
Subtraction	$\mathrm{a}-\mathrm{b}$	$\mathrm{a}-\mathrm{b}$	-
exponentiation	a^{b}	$\mathrm{a}^{\wedge} \mathrm{b}$	\wedge
Power of 10	10^{x}	1 ex	e

Examples:

1) Write MATLAB expressions for the following algebraic expression

$$
y=2 x+5 \sqrt{z}-400
$$

Solution:

$$
y=2^{*} x+5^{*} z^{\wedge} 0.5-400
$$

OR

$$
y=2^{*} x+5^{*} z^{\wedge} 0.5-4 e 2
$$

OR
$y=2^{*} x+5^{*} z^{\wedge} 0.5-4^{*} 10^{\wedge} 2$

Example :

Number	Exponent form	MATLLAB form
789.34	7.8934×10^{2}	7.8934 e 2
0.0001	1×10^{-4}	$1 \mathrm{e}-4$
4	4×10^{0}	4 e 0
400000000000	4×10^{11}	4 e 11

Order of precedence

Order of
precedence

First	Parentheses (), evaluated starting with the innermost pair.

Second	Exponentiation (power) ^, evaluated from left to right.

Third \quad Multiplication * and division / with equal precedence, evaluated from left to right.
Fourth Addition + and subtraction - with equal precedence, evaluated from left to right.

Example

\square State the order of evaluation of the operators in each of the following MATLAB statement and show the value of \mathbf{x} after statement is performed
$x=(3 * 9 *(3+(9 * 3 /(4-1))))$?

\square Solution:

1) $x=(3 * 9 *(3+(9 * 3 /(4-1))))$
2) $x=(3 * 9 *(3+(9 * 3 / 3)))$
3) $x=(3 * 9 *(3+(27 / 3)))$
4) $x=(3 * 9 *(3+9))$
5) $x=(3 * 9 * 12)$
6) $x=(27 * 12)$
7) $x=324$

The Assignment Operator (Replacement)=

- When you type $x=3$ in MATLAB, you tell MATLAB to assign the value 3 to the variable x.
\square We can then type $x=x+2$ in MATLAB. This assigns the value $3+2=5$ to x. But in algebra this implies that $0=$ 2 ?!!!.
\square In algebra we can write $x+2=20$, but in MATLAB we cannot ?!!!.
\square In MATLAB the left side of the $=$ operator must be a single variable.
\square The right side must be a computable value.

$$
\begin{aligned}
& z+5=y \longrightarrow \text { wrong } \\
& y=3 ; \\
& z=5+y
\end{aligned} \longrightarrow \text { correct }
$$

Variable Names

\square Variables are symbolic names that represent locations in the computer's random access memory (RAM)
\square To use a variables must declare it by telling the compiler its name and value. This is called a variable declaration.
\square Variable declaration tells the compiler to allocate appropriate memory space for the variables.

Variable Names

\square Rules for declaring a variables in MATLAB:
a-Variable names must begin with a letter
b-The rest of name can contain letters, digits and underscore characters
c-MATLAB is case-sensitive
\square Thus the following names represent 4 different variables:
speed
SPEED

Speed
Speed_1

Note:

Avoid Using Function Names for Variables

\square When naming a variable, make sure you are not using a name that is already used as a function name, either one of your own M-file functions or one of the functions (Command) in the MATLAB language. If you define a variable with a function name, you will not be able to call that function until you remove the variable from memory with the clear function,
\square For example, if you enter the following command, you will not be able to use the MATLAB help command until you clear the variable with clear help
\square help $=50$;

```
>> help=50;
>> help sin
??? Error: "help" was previously used as a variable,
conflicting with its use here as the name of a function or command.
See MATLAB Programming, "How MATLAB Recognizes Function Calls That Use
Command Syntax" for details.
>> clear help
>> help sin
    SIN Sine of argument in radians.
        SIN(X) is the sine of the elements of X.
    See also asin, sind.
    Overloaded methods:
            codistributed/sin
        sym/sin
        Reference page in Help browser
            doc sin
```


Example

\square which of the following are legitimate (valid) variable names in MATLAB? Explain why invalid?
a Global
b My_var
c _input
d $X+Y$
e Example1-1
\square Answer:
a-legitimate (valid) b-legitimate (valid)
c-invalid because begins with a underscore
d-invalid because contains symbol + e-invalid because contains symbol -

Special Variables and Constants

Command	Description
ans	Temporary variable containing the most recent answer.
pi	The number $\pi=3.141592653589793 \ldots . .$.
lnf	Infinity (∞) (example: 7/0).
NaN	Indicates an undefined numerical result (Not a Number), (example: $0 / 0)$.

Some Commonly Used Mathematical Functions

Function in calculus	MATLAB Syntax	Note: The MATLAB trigonometric functions use
e^{x}	$\exp (\mathrm{x})$	
\sqrt{x}	sqrt(x)	radian measure
$\ln x$	$\log (\mathrm{x})$	To convert from Degree \rightarrow Radian use : $180^{\circ} \rightarrow \pi$
$\log _{10} \mathrm{x}$	$\log 10(\mathrm{x})$	
\| x	abs(x)	
$\cos \mathrm{x}$	$\cos (\mathrm{x})$	Or use sind()
$\sin x$	$\sin (\mathrm{x})$	$x^{y}=x^{\wedge} y$
$\tan \mathrm{x}$	$\tan (\mathrm{x})$	
$\cos ^{-1} x$	$\operatorname{acos}(x)$	
$\sin ^{-1} x$	$\operatorname{asin}(\mathrm{x})$	
$\tan ^{-1} x \quad$ cha	2-1 Basic oftegit	17

Examples

Write MATLAB expressions to calculate the following algebraic expressions:

$$
\text { a- } x=e^{(-2.1)^{3}}+3.47 \log _{10} 14+\sqrt[4]{287}
$$

$$
b-y=\cos \left(\frac{4.12 \pi}{6}\right)^{2}+100 \sin \left(90^{\circ}\right)
$$

Solution:

$$
\begin{aligned}
& a-x=\exp \left((-2.1)^{\wedge} 3\right) \\
& \quad+3.47 * \log 10(14)+(287)^{\wedge}(1 / 4)
\end{aligned}
$$

$$
b-y=\cos \left(\left(4.12^{*} \mathrm{pi} / 6\right)^{\wedge} 2\right)+100 * \sin (\mathrm{pi} / 2)
$$

Expressing Function Arguments

We can write $\sin 2$ in text, but MATLAB requires parentheses surrounding the 2 (which is called the function argument or parameter) Thus to evaluate sin 2 in MATLAB, we type $\sin (2)$.The MATLAB function name must be followed by a pair of parentheses that surround the argument.

Example :

$$
\begin{aligned}
& \mathrm{y}=\sin ^{2} \\
& \mathrm{w}=\sin ^{2} \mathrm{x} \\
& \mathrm{z}=\sin (\sqrt{x}+1) \quad \square \mathrm{y}=\sin \left(\mathrm{x}^{\wedge} 2\right) \\
& \mathrm{w}=(\sin (\mathrm{x}))^{\wedge} 2 \text { or } \mathrm{w}=\sin (\mathrm{x})^{\wedge} 2
\end{aligned}
$$

Some common mathematical functions

ceil(x) Round to nearest integer toward ∞.
fix (x) Round to nearest integer toward zero.
floor (x) Round to nearest integer toward $-\infty$.
round (x) Round toward nearest integer.
$\operatorname{sign}(x) \quad+1$ if $x>0 ; 0$ if $x=0 ;-1$ if $x<0$

a	ceil(a)	fix(a)	floor(a)
-2.5	-2	-2	-3
-1.75	-1	-1	-2
-1.25	-1	-1	-2
-0.5	0	0	-1
0.5	1	0	0
1.25	2	1	1
1.75	2	1	1
2.5	3	2	2

```
>> y=2.2361;
>> z=3.8730;
>> m=ceil(y)
m =
3
>> c=ceil(z)
c =
4
>> r=round (y)
r =
2
>>n=round (z)
n =
    4
```

$\gg f=f i x(y)$
f $=$ 2
$\gg \mathrm{i}=\mathrm{fix}(\mathrm{z})$
i $=$

3
$\gg a=f l o o r(y)$
a $=$

2
$\gg b=f l o o r(z)$
$\mathrm{b}=$

3

Complex numbers

1. $(3+6 i)(-7-9 i)$
2. $\frac{5+4 i}{5-4 i}$
3. $\frac{3}{2}$, or $\frac{3 i}{2}$
4. $\frac{3}{2 i}$ The solution

5. $3 / 2^{2 \pi 3}$ or $3 i / 2$
6. $3 /\left((2)^{235}\right)$ or $3 / 2 i$
note that i should not be defined as a variable, if so then don't give * before i.
for example if you define $i=5$ then $3+6 i$ will be written as $3+6 i$ (not $3+6 * i)$.

More commands

\square Clear command Clear variable1 variable2

$$
a=10
$$

$$
b=10
$$

Clear a (clear the value of variable a)
Clear $a b(c l e a r$ the of value of a and b)

Random Real Numbers

\square rand - generate one real number between 0 to 1 .
\square rand*10 -Generate one real number between 0 to 10
\square rand*100-Generate one real number between 0 to 100
\square rand(3,3)-generate 3 by 3 matrix of real numbers between 0 to 1 .
\square rand $(3,3) * 10$-generate 3 by 3 matrix of real numbers betweer 0 to 10 .
\square rand $*(10-5)+5$ - Generate the one number between 5 to 10 .
\square rand $(3,3) *(10-5)+5-$ Generate the 3 by 3 matrix between 5 to 10 .
\square randn- Generate the normally distributed random real Numbers

Random Integer

\square randi- Generate the random integer based on input arguments.
\square randi (a, b)-Generate b by b matrix with random integer between 1 to a
\square randi $(3, b)$-generate b by b matrix with random integer between 1 to 3
\square randi([-5,5],3,4)- Generate 3 by 4 matrix between -5 to 5 .

