BRAV

Chapter 25 exercises

Q1. A capacitor with capacitance of 1.25 pF is charged by applying a voltage of 12 V across its ends. The total charge of the capacitor is:

Q2. A parallel-plate capacitor with plate's area $25 \mathrm{~cm}^{2}$ and separation of 17.7 mm is charged by applying a voltage of 12 V across its ends. The capacitance of the capacitor is:

BRAV

Physics 202 | $\operatorname{\text {فيزياءr.}}$

Q3. A parallel-plate capacitor has a capacitance of $8 \mu \mathrm{~F}$. Its capacitance if the plate separation is doubled is:

Q4. Referring to Example 3, if the plate area of the capacitor is doubled. The capacitance will be:

Q5. A coaxial cable of radii 5 mm and 3 mm is connected by a battery of 12 V . If the charge on each cable is 6 nC , the length of the capacitor is:

BRAV

Physics 202 | فيزياء r.r

Q6. Two concentric spherical shells of radii 4 cm and 3 cm has a charge of 5 nC . The potential difference across the capacitor is:

Q7. As shown in the figure, $\mathrm{C}_{1}=6 \mu \mathrm{~F}$ and $\mathrm{C}_{2}=\mathrm{C}_{3}=\mathrm{C}_{4}=2 \mu \mathrm{~F}$. The equivalent capacitance is:

Q8. An isolated conducting sphere whose radius R is 6.85 cm has a charge $\mathrm{q}=1.25 \mathrm{nC}$. The potential energy stored in the electric field of this charged conductor is:

BRAV(3)

Physics 202 |

Q9. Referring to Example 8, the energy density at the surface of the sphere is:

Q10. A parallel-plate capacitor whose capacitance C is 13.5 pF is charged by a battery to a potential difference $V=12.5 \mathrm{~V}$ between its plates. The potential energy of the capacitor-slab device after a porcelain slab $(\kappa=6.50)$ is slipped between the plates is:

BRAV

Physics 202 | 2

Q11. According to the figure, C1 $=3 \mathrm{~F}, \mathrm{C} 2=5 \mathrm{~F}$ and $\mathrm{V}=10$
a) find the equivalent capacitance.
b) find the charge on C2
c) find the electric potential on C1

Q12. According to the figure C1 $=4 \mathrm{~F}, \mathrm{C} 2=5 \mathrm{~F}$, and $\mathrm{V}=50 \mathrm{~V}$
a) Find the equivalent capacitance
b) find the charge on C1
c) find the potential energy

BRAV过

Physics 202 | \quad T.

Q13. According to the figure C1 $=4 \mathrm{~F}, \mathrm{C} 2=\mathrm{C} 3=5 \mathrm{~F}$, and $\mathrm{V}=$ 50 V
a) Find the equivalent capacitance
b) find the charge on C1
c) find the potential energy on C3

Q14. According to the figure, find the potential energy in the capacitor

12.5 V

BRAV

Physics 202 | 2

Q15. According to the figure, find the potential energy in the capacitor if a dielectric slab 3.5 is introduced between the plate

Q16. If the voltage V has doubled, the potential energy U will be:
a) U
b) $2 U$
c) $4 U$
d) Zero

Physics 202 | Y. Y 202

Q17. A parallel plate capacitor has Area of $10 \mathrm{~cm}^{2}$ seperated by 5 mm find the total charge on the plate when 12 V battery is connected

Q18. A parallel plate capacitor of plate area $15 \mathrm{~cm}^{2}$ and seperation 3 mm has a total charge of 20 nC the potential difference between the plates is

Q19. A parallel plate capacitor of plate area $15 \mathrm{~cm}^{2}$ and seperation 3 mm has a total charge of 20 nC the stored energy is:

Physics 202 | 2

Q20. A capacitor with capacitance C stores a charge of q when a voltage is V . If the voltage is doubled, the capacitance will be
a) $C / 2$
b) C
c) $2 C$
d) Zero

Q21. A cylindrical capacitor with capacitance C and length L, if L is halved the Capacitance will be:
a) $C / 2$
b) C
c) $2 C$
d) Zero

