Physics 202 | $\operatorname{\text {فيزياءr.r}}$

Chapter 25 Capacitance

BRAV

Physics 202 | Y. 2 .

Capacitors

BRAV(3)

Q1. A parallel plate capacitor with plate area $15 \mathrm{~cm}^{2}$ And seperation of 30 mm is charged by 125 V . The capcitance of the capacitor is:

Q2. a capacitor with capacitance 3.5 nF is charged by 15 V , the total charge is:

Q3. A capacitor plate with capacitance C and seperation d. Find the capacitance if the seperation doubled
a) C
b) $2 C$
c) $C / 2$
d) zero

BRAV

Physics 202 | 2

Q4. A capacitor plate with capacitance C is applied by a voltage V . Find the capacitance if the voltage is 4 V
a) $4 C$
b) C
c) $C / 2$
d) zero

Q5. A capacitor plate with capacitance C and area A. Find the capacitance if the area has doubled
a) $2 C$
b) C
c) $C / 2$
d) zero

BRAV过
 Physics 202 | \quad T.
 Capacitors

Cylindrical capacitance $C=\frac{L}{2 k \cdot \ln (b / a)}$ $\mathrm{L}=$ length of the capacitor $a=$ inner radius $b=$ outer radius $b>a$	
Spherical capacitance $\begin{array}{ll} & C=\frac{a b}{k(b-a)} \\ \begin{array}{ll} \text { a }=\text { inner radius } \\ b=\text { outer radius } \end{array} & \end{array}$	
Isolated conductor sphere $C=\frac{R}{k}$ $\mathrm{R}=\text { radius }$	

Q6. A coaxial cable of length 30 cm and radii 10 mm and 5 mm is connected by a battery of 8 V if the charge on each cable is 8 nC find the capacitance

Q7. A coaxial cable of radii 8 mm and 13 mm is connected by a battery of 12 V if the charge on each cable is 6 nC find the length of the capacitor

Q8. Two spherical shells of radii 2 cm and 4 cm has a charge of 3 C. Find the capacitance

BRAV

Capacitors in series and parallel

BRAV(3)

Physics 202 | 2 بيزياء r.

Changing a battery to a capacitor

Q9. Example: The battery in fig. 1 is removed and replaced by uncharged capacitor C_{2} as shown in fig.2. Find the charge on each capacitor in fig. 2

BRAV

Physics 202 | 2 بيزياء r.

Q10. According to the figure find the voltage on C2

Q11. According to the figure find the equivelant capacitance if $\mathrm{C} 1=2 \mathrm{nF}, \mathrm{C} 2=\mathrm{C} 3=4 \mathrm{nF}, \mathrm{C} 4=10 \mathrm{nF}$

BRAV(3)

Potential energy in capacitors

Energy density	
$\substack{u=\text { energy density } \\ \mathrm{E}=\text { electric field }}$	$u=\frac{1}{2} \varepsilon_{0} E^{2}$

Q12. An capacitor has a charge of 3 nC and applied by electric potential of 12 V , find the potential energy stored in the capacitor

BRAV

Capacitor with dielectric

$$
C_{n}=k C_{A i r}
$$

C $n=$ new capacitance
$\mathrm{k}=$ dielectric constant
C air = capacitance without k (normal C)

Q13. A capacitor plates with capacitance of 15 nF is charged by a battery to a potential difference $\mathrm{V}=12.5 \mathrm{~V}$ a dielectric material is slipped between the plate to make the capacitance $=97.5 \mathrm{nF}$. Find the dielectric constant (k).

BRAV

Physics 202 | $\operatorname{\text {فيزياءr.}}$

القوانين

$$
\begin{array}{rlrl}
q & =C V & C_{e q}=\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\ldots \ldots \ldots\right)^{-1} \\
C & =\varepsilon_{0} \frac{A}{d} & C_{e q}=C_{1}+C_{2}+C_{3}+\ldots \ldots \ldots \\
C & =\frac{L}{2 k \cdot \ln (b / a)} \text { Cylindrical } & V & =\frac{C_{1} V_{o}}{C_{1}+C_{2}} \\
C & =\frac{a b}{k(b-a)} & U & =\frac{q^{2}}{2 C} \\
C & =\frac{R}{k} & U & =\frac{1}{2} C V^{2} \\
C_{n} & =k C_{\text {spherical }}^{\text {(2 radiuses) }} \begin{array}{c}
\text { Isod conducting } \\
\text { sphere } \\
\text { (1 radius) }
\end{array} & u & =\frac{1}{2} \varepsilon_{0} E^{2}
\end{array}
$$

