BRAV

Physics 202 | $\operatorname{\text {فيزياءr.r}}$

Chapter 23 Gauss' Law

BRAV退

Physics 202 | فيزياء r.r

Electric flux

Q1. Gaussian surface encloses three charges, q1 $=15 \mathrm{C}, \mathrm{q} 2=-8$ C, q3 = 5 C. Find the electric flux through the gaussian surface

Q2. According to the figure, find the electric flux through surface 1, if the electric field is $250 \mathrm{~N} / \mathrm{C}$ to the positive x direction and $\mathrm{L}=5$

Physics 202 | Y.

Infinite line

Q3. The electric field at 5 cm from an infinite line is $120 \mathrm{~N} / \mathrm{C}$, find the electric field at 18 cm

Q4. The electric field at 10 from an infinite line with linear charge density of $5 \times 10^{-6} \mathrm{C} / \mathrm{m}$ is:

BRAV

Physics 202 | \quad |r.r

Conductors Non-conductors

Q5. An electron placed near non-conducting sheet carrying a surface charge density of $17.7 n C / m^{2}$. The magnitude of the electric force acting on the electron is:

Q6. An electron placed near a conducting sheet carrying a surface charge density of $17.7 n C / m^{2}$. The magnitude of the electric field on the electron is:

Physics 202 | \quad |r.

Parallel plates

Physics 202 | |r.r

Parallel plates

Q. 7 two parallel non-conducting sheet carry equal but opposite surface charges of $5.5 \mu \mathrm{C} / \mathrm{m}^{2}$. The electric field between them is:
Q. 8 two parallel non-conducting sheet carry equal surface charges of $5.5 \mu \mathrm{C} / \mathrm{m}^{2}$. The electric field between them is:

BRAV

Electric field (spheres)

Conducting sphere

Physics 202 | 2

Q9. A metalic sphere of radius 10 cm has a charge of 3 C .
a) Find the electric field at 8 cm from its center
b) find the electric field at 15 cm from its center

Q9. A solid sphere of radius 5 cm has a charge of
a) Find the electric field at 2 cm from its center
b) find the electric field at 10 cm from its center

BRAV

القوانين

$\phi=E A \cos \theta$
$\phi=\frac{q_{e n c}}{\varepsilon_{o}}$
Electric flux

$E=0$ In $E=\frac{k q}{r^{2}}$ Out Conducting sphere (metal) $E=\frac{k q r}{R^{3}} \quad$ In E $=\frac{k q}{r^{2}} \quad$ Out Non-Conducting sphere (solid) $E=\frac{\sigma}{\varepsilon_{0}} \quad$ Conductor

$$
E=\frac{\sigma}{2 \varepsilon_{0}} \quad \begin{gathered}
\text { Non-conducting } \\
\text { sheet }
\end{gathered}
$$

