SCPH 101

Ch. 1

Units, Physical Quantities, and Vectors

Chapter 1

Chapter One Units, Physical Quantities, and Vectors

- Standards and Units
- Using and Converting Units
- Vectors and Vector Addition
- Component of Vectors
- Unit Vectors
- Products of Vectors

Standards and Units

Measuring Things

- Measuring things can be by direct or indirect ways.
- Length
- Temperature
- \quad Speed

Standards and Units

- Physical Quantities Divided into two categories:

- Basic Quantities.

- Derived Quantities.

Standards and Units

Basic Quantities:

- Do not need other physical quantities to define them.
- Represented by one unit and without particular direction.
- Examples:

Unit symbol	Unit name	Basic physical quantities	
m	المتر	Length	الطول
s	الثنانية	Time	الزمن
Kg	كيلو جرام	Mass	الكتلة
K	الكلفن	Temperature	درجة الحرارة
A	الأمبير	Electric Carnet	شدة التيار
C_{d}	الثمعة	Luminous Intensity	قوة الإضـاءة

Standards and Units

Symbol	Multiple	Unit Name
K	10^{3}	Kilo
M	10^{6}	Mega
G	10^{9}	Giga
T	10^{12}	Tera
d	10^{-1}	Deci
c	10^{-2}	Centi
m	10^{-3}	Milli
μ	10^{-6}	Micro
n	10^{-9}	Nano
p	10^{-12}	Pico

Standards and Units

Derived Quantities:

- Expressed by more than one basic physical quantity.
- Examples:

Formula	Symbol	Derived physical quantities	
الطول × العرض	A	Area	المساحة
المسافة	v	Velocity	السرعة
السرعة	a	Acceleration	التسارع
الكتلة	ρ	Density	الكثّافة
الكتلة \times النسارع	F	Force	القوة

Standards and Units

The International System of Units

- The units are a fundamental part of physical quantities to define it.
- Example:

Standards and Units

- There are several conventional systems of units:
a) French system: centimeter-gram-second (cgs).
b) Metric system: meter-kilogram-second (mks).
c) British system: foot, slug and pound.

Standards and Units

- The metric system has been adopted in 1971 at the general conference of the measurements and weights in France (SI units).

Quantity	Unit Name	Unit Sy
Length	meter	m
Time	second	s
Mass	kilogram	kg

Standards and Units

Length

The meter is the length of the path traveled by light in a vacuum during a time interval of $1 / 299792458$ of a second.

Standards and Units

Time

One second is the time taken by 9192631770 oscillations of the light (of a specified wavelength) emitted by a cesium-133 atom.

Standards and Units

Mass

The Standard Kilogram

Density

$$
\rho=\frac{m}{V}
$$

Using and Converting Units

Changing Units

$$
\begin{gathered}
\frac{1 \mathrm{~min}}{60 \mathrm{~s}}=1 \text { and } \frac{60 \mathrm{~s}}{1 \mathrm{~min}}=1 . \\
2 \mathrm{~min}=(2 \mathrm{~min})(1)=(2 \mathrm{~min})\left(\frac{60 \mathrm{~s}}{1 \mathrm{~min}}\right)=120 \mathrm{~s} .
\end{gathered}
$$

Using and Converting Units

Example 1:

A car is traveling at $20 \mathrm{~m} / \mathrm{s}$. The speed of this car is equivalent to:

Solution:
(A) $23 \mathrm{~km} / \mathrm{h}$
(B) $56 \mathrm{~km} / \mathrm{h}$
(C) $72 \mathrm{~km} / \mathrm{h}$
(D) $97 \mathrm{~km} / \mathrm{h}$

Using and Converting Units

Example 2:

A cube of edge 47.5 mm , its volume is:

Solution:
(D)
(A) $43 \mathrm{~m}^{3}$
(B) $0.473 \mathrm{~m}^{3}$
(C) $47.3 \mathrm{~m}^{3}$
(D) $1.072 \times 10^{-4} \mathrm{~m}^{3}$

Using and Converting Units

Example 3:

A train moves with a speed of 65 mile per hour. The speed in SI units is: $\quad($ Hint: 1 mile $=1610 \mathrm{~m})$

Solution:
(B)
(A) 24
(B) 29
(C) 32
(D) 37

Vectors and Vector Addition

Vectors and Scalars

Scalars

- Have a magnitude only, such as:
- Temperature.
- Area.
- Length.
- \quad Specified by a number with a unit, $\left(10^{\circ} \mathrm{C}\right)$ or (3 m).
- Obey the rules of ordinary algebra.

Vectors and Vector Addition

Vectors

- Have both magnitude and direction, such as:
- Displacement.
- Velocity.
- Acceleration.
- Specified by a number with a unit and direction,
- (4 m) North.
- ($60 \mathrm{~km} / \mathrm{h}$) South.
- Obey the rules of vector algebra.

Vectors and Vector Addition

Example 4:

Which of the following quantities is not a vector quantity?
Solution:

(B)

(A) Velocity
(B) Mass
(C) Acceleration
(D) Force

Vectors and Vector Addition

Adding Vectors Geometrically

- Vectors added geometrically by drawing them to a common scale and placing them head to tail.
- Their vector sum can be represented by connecting the tail of the first to the head of the second.

Vectors and Vector Addition

- To subtract, reverse the direction of the second vector then add to the first.

(a)
- Vector addition is commutative and obeys the associative law.

$$
\begin{gathered}
\vec{a}+\vec{b}=\vec{b}+\vec{a} \\
(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})
\end{gathered}
$$

Component of Vectors

Components of Vectors

- Two dimensional vector has scalar components given by :

$$
\begin{aligned}
& a_{x}=a \cos \theta \\
& a_{y}=a \sin \theta
\end{aligned}
$$

- The magnitude and direction of the vector can be given as follows:

$$
\begin{aligned}
& a=\sqrt{a_{x}^{2}+a_{y}^{2}} \\
& \tan \theta=\frac{a_{y}}{a_{x}}
\end{aligned}
$$

Component of Vectors

Adding Vectors by Components

- To add vectors in component form, if

$$
\vec{r}=\vec{a}+\vec{b}
$$

Then

$$
\begin{aligned}
& r_{x}=a_{x}+b_{x} \\
& r_{y}=a_{y}+b_{y} \\
& r_{z}=a_{z}+b_{z} .
\end{aligned}
$$

Component of Vectors

Example 5:

The component of vector \vec{A} are given as $A_{x}=5.5 \mathrm{~m}$ and $A_{y}=-5.3 \mathrm{~m}$. The magnitude of vector \vec{A} is:

Solution:
(C)
(A) 6.1 m
(B) 6.9 m
(C) 7.6 m
(D) 8.4 m

Unit Vectors

Unit Vectors

- Unit vectors have magnitude of unity and directed in the positive directions of the axes.

$$
\begin{aligned}
& \vec{a}=a_{x} \hat{i}+a_{y} \hat{\mathrm{j}} \\
& \vec{b}=b_{x} \hat{\mathrm{i}}+b_{y} \hat{\mathrm{j}}
\end{aligned}
$$

Unit Vectors

Example 6:

In figure, if $\vec{A}+\vec{B}-\vec{C}=4 \hat{i}$ then the vector \vec{A} in unit vector notation is:

Solution:
(A) $4 \hat{i}+2 \hat{j}$
(B) $9 \hat{i}+4 \hat{j}$
(C) $8 \hat{i}+6 \hat{j}$
(D) $5 \hat{i}+4 \hat{j}$
(C)

Products of Vectors

Multiplying Vectors

Multiplying Vectors

Products of Vectors

Multiplying Vector by a Scalar

- If we multiply a vector \vec{a} by a scalar s, we get a new vector.
- Its magnitude is the product of the magnitude of \vec{a} and the absolute value of s.

$$
s \vec{a}
$$

- Its direction is the direction of \vec{a} if s is positive but the opposite direction if s is negative.
- To divide \vec{a} by s, we multiply \vec{a} by $1 / s$.

Products of Vectors

Multiplying a Vector by a Vector

The Scalar Product

Products of Vectors

The Scalar Product

$$
\begin{gathered}
\vec{a} \cdot \vec{b}=a b \cos \phi \\
\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a} \\
\vec{a} \cdot \vec{b}=\left(a_{x} \hat{\mathrm{i}}+a_{y} \hat{\mathrm{j}}+a_{z} \hat{\mathrm{k}}\right) \cdot\left(b_{x} \hat{\mathrm{i}}+b_{y} \hat{\mathrm{j}}+b_{z} \hat{\mathrm{k}}\right) \\
\vec{a} \cdot \vec{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}
\end{gathered}
$$

Products of Vectors

Example 6:

Given $\vec{A}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}, \overrightarrow{\mathrm{B}}=2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$, then $(\vec{A} \cdot \vec{B})$ is:
Solution:
(C)
(A) $3 \hat{i}+4 \hat{j}-5 \hat{k}$
(B) 40
(C) 8
(D) $\hat{i}+\hat{j}-5 \hat{k}$

Products of Vectors

Example 7:

Given $\vec{A}=2 \hat{i}+\hat{j}+3 \hat{k}, \vec{B}=2 \hat{i}-6 \hat{j}+7 \hat{k}, \vec{C}=2 \hat{i}-\hat{j}+4 \hat{k}$ then the vector $\vec{D}=2 \vec{A}+\vec{B}-\vec{C}$ is:

Solution:
(D)
(A) $-\hat{i}-2 \hat{j}+3 \hat{k}$
(B) $3 \hat{i}+2 \hat{j}-5 \hat{k}$
(C) $3.5 \hat{i}$
(D) $4 \hat{i}-3 \hat{j}+9 \hat{k}$

Products of Vectors

Example 8:

Refer to Example 7, the angle between the vector \vec{A} and the positive z -axis is:

Solution:

(B)

(A) Zero
(B) 36.7°
(C) 180°
(D) 315°

Products of Vectors

Example 9:

The result of $\hat{\mathrm{i}} \cdot \hat{\mathrm{j}}$ is:

Solution:
(A)
(A) Zero
(B) $\hat{\mathrm{i}}$
(C) \hat{k}
(D) \hat{j}

Products of Vectors

The Vector Product

$$
\begin{gathered}
c=a b \sin \phi, \\
\vec{b} \times \vec{a}=-(\vec{a} \times \vec{b}) \\
\vec{a} \times \vec{b}=\left(a_{x} \hat{\mathrm{i}}+a_{y} \hat{\mathrm{j}}+a_{z} \hat{\mathrm{k}}\right) \times\left(b_{x} \hat{\mathrm{i}}+b_{y} \hat{\mathrm{j}}+b_{z} \hat{\mathrm{k}}\right), \\
\vec{a} \times \vec{b}=\left(a_{y} b_{z}-b_{y} a_{z}\right) \hat{\mathrm{i}}+\left(a_{z} b_{x}-b_{z} a_{x}\right) \hat{\mathrm{j}}+\left(a_{x} b_{y}-b_{x} a_{y}\right) \hat{\mathrm{k}}
\end{gathered}
$$

(a)

(b)

Products of Vectors

Example 10:

If \vec{A} and \vec{B} are vectors with magnitudes 5 and 4 respectively, and the magnitude of their cross product is 17.32, then the angle between \vec{A} and \vec{B} is:

Solution:
(C)
(A) 180°
(B) 90°
(C) 60°
(D) 45°

Products of Vectors

Example 11:

Given that $\vec{A}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}, \overrightarrow{\mathrm{B}}=2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+4 \hat{\mathrm{k}}$, then $(\vec{A} \times \vec{B})$ is:

Solution:
(A)
(A) $11 \hat{i}+2 \hat{j}-5 \hat{k}$
(B) $-\hat{i}-2+3 \hat{k}$
(C) $3.5 \hat{i}$
(D) $\hat{i}+2 \hat{j}-5 \hat{k}$

Products of Vectors

Example 12:

If $\vec{A} \times \vec{B}=0$, the angle between the vectors \vec{A} and \vec{B} is: (Hint: \vec{A} and \vec{B} are non-zero vectors)

Solution:
(D)
(A) 270°
(B) 90°
(C) 45°
(D) Zero

Products of Vectors

Example 13:
The result of $(\hat{i} \times \hat{j}) \cdot \hat{j}$ is:
Solution:

(D)

(A) \hat{i}
(B) \hat{j}
(C) \widehat{k}
(D) Zero

Products of Vectors

Example 14:

The result of $(\hat{i} \times \hat{j}) \times \hat{i}$ is:

Solution:

(B)

(A) Zero
(B) \hat{j}
(C) $\hat{\mathrm{k}}$
(D) 1

