

SCPH 101

Ch. 1

Units, Physical Quantities, and Vectors

Chapter 1

Chapter One *Units, Physical Quantities, and Vectors*

- Standards and Units
- Using and Converting Units
- Vectors and Vector Addition
- Component of Vectors
- Unit Vectors

2

Products of Vectors

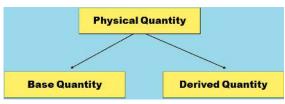
Measuring Things

Measuring things can be by direct or indirect ways.

- Length

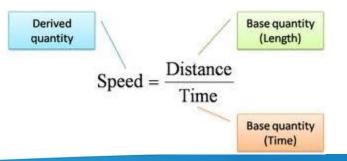
- Temperature

 Physical Quantities Divided into two categories:



- Basic Quantities.

- Derived Quantities.



Basic Quantities:

- Do not need other physical quantities to define them.
- Represented by one unit and without particular direction.
- Examples:

Unit symbol	Unit name	Basic physical c	quantities
m	المتر	Length	الطول
S	الثانية	Time	الزمن
Kg	کیلو جرام	Mass	الكتلة
К	الكلفن	Temperature	درجة الحرارة
A	الأمبير	Electric Carnet	شدة التيار
C C	أشمعه	Luminous	- 1 · MI
C _d	السمعه	Intensity	قوة الإضاءة

Symbol	Multiple	Unit Name
К	10 ³	Kilo
М	10 ⁶	Mega
G	10 ⁹	Giga
т	10 ¹²	Tera
d	10-1	Deci
С	10 ⁻²	Centi
m	10 ⁻³	Milli
μ	10 ⁻⁶	Micro
n	10 ⁻⁹	Nano
р	10 ⁻¹²	Pico

Derived Quantities:

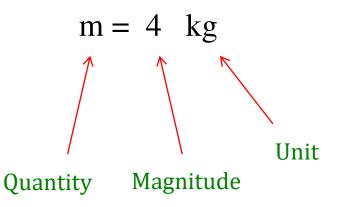
- Expressed by more than one basic physical quantity.
- Examples:

Formula	Symbol	Derived physic	cal quantities
الطول × العرض	А	Area	المساحة
المسافة ÷ الزمن	υ	Velocity	السرعة
السرعة ÷ الزمن	а	Acceleration	التسارع
الكتلة ÷ الحجم	ρ	Density	الكثافة
الكتلة × التسارع	F	Force	القوة

The International System of Units

 The units are a fundamental part of physical quantities to define it.

Example:



• There are several conventional systems of units:

a) French system:

```
centimeter-gram-second (cgs).
```

b) Metric system:

meter-kilogram-second (mks).

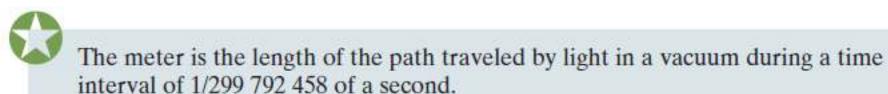
c) British system:

foot, slug and pound.

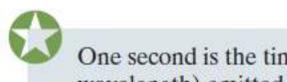
• The metric system has been adopted in 1971 at the general conference of the measurements and weights in France (SI units).

Quantity	Unit Name	Unit Symbol
Length	meter	m
Time	second	S
Mass	kilogram	kg

Length



Time



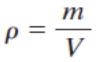
One second is the time taken by 9 192 631 770 oscillations of the light (of a specified wavelength) emitted by a cesium-133 atom.

Mass

The Standard Kilogram

590

Density



Changing Units

$$\frac{1 \min}{60 \text{ s}} = 1$$
 and $\frac{60 \text{ s}}{1 \min} = 1$.

$$2\min = (2\min)(1) = (2\min)\left(\frac{60 \text{ s}}{1\min}\right) = 120 \text{ s}.$$

Example 1:

A car is traveling at 20 m/s. The speed of this car is equivalent to:

Solution:

(C)

(A) 23 km/h (B) 56 km/h (C) 72 km/h (D) 97 km/h

Example 2:

A cube of edge 47.5 mm, its volume is:

Solution:

(A) 43 m³
(B) 0.473 m³
(C) 47.3 m³
(D) 1.072×10⁻⁴ m³

(D)

Example 3:

A train moves with a speed of 65 mile per hour. The speed in SI units is: (Hint: 1 mile = 1610 m)

Solution:

(A) 24 (B) 29 (C) 32 (D) 37

(B)

Vectors and Scalars

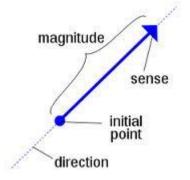
Scalars

- Have a magnitude only, such as:
 - Temperature.
 - Area.
 - Length.
- Specified by a number with a unit, (10°C) or (3m).

Obey the rules of ordinary algebra.

Vectors

- Have both magnitude and direction, such as:
 - Displacement.
 - Velocity.
 - Acceleration.



- Specified by a number with a unit and direction,
 - (4 m) North.
 - (60 km/h) South.

Obey the rules of vector algebra.

Example 4:

Which of the following quantities is not a vector quantity?

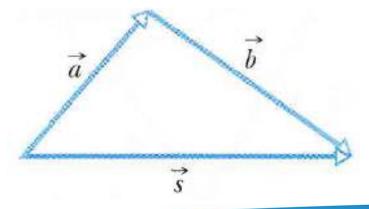
Solution:

(B)

(A) Velocity(B) Mass(C) Acceleration(D) Force

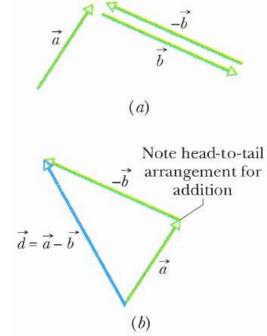
Adding Vectors Geometrically

- Vectors added geometrically by drawing them to a common scale and placing them head to tail.
- Their vector sum can be represented by connecting the tail of the first to the head of the second.



• To subtract, reverse the direction of the second vector then add to the first.

Vector addition is commutative and obeys the associative law.



$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$

$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$

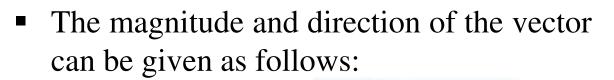
Component of Vectors

Components of Vectors

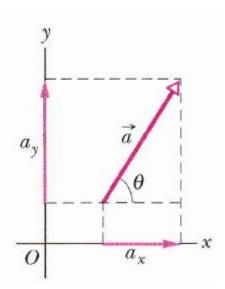
• Two dimensional vector has scalar components given by :

$$a_y = a \sin \theta$$
,

 $a_x = a \cos \theta$



$$a = \sqrt{a_x^2 + a_y^2}$$
$$\tan \theta = \frac{a_y}{a_x}$$



Component of Vectors

Adding Vectors by Components

• To add vectors in component form, if

$$\vec{r} = \vec{a} + \vec{b},$$

Then

$$r_x = a_x + b_x$$
$$r_y = a_y + b_y$$
$$r_z = a_z + b_z.$$

Component of Vectors

Example 5:

The component of vector \vec{A} are given as $A_x = 5.5 m$ and $A_y = -5.3 m$. The magnitude of vector \vec{A} is:

Solution:

(C)

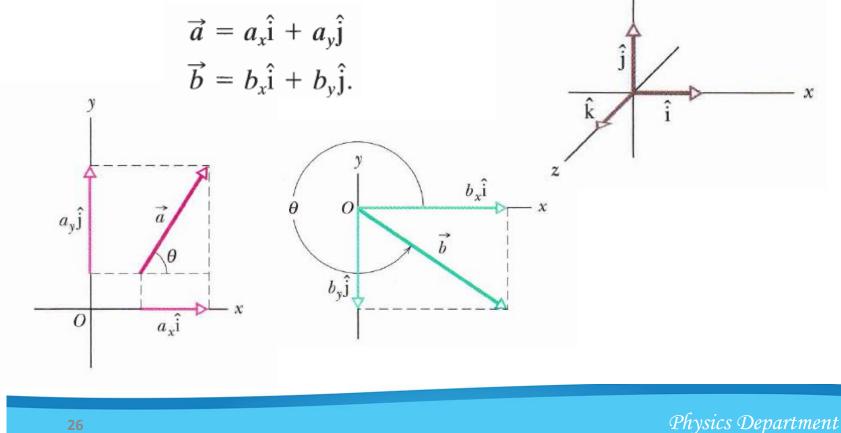
Physics Department

(A) 6.1 m
(B) 6.9 m
(C) 7.6 m
(D) 8.4 m

Unit Vectors

Unit Vectors

Unit vectors have magnitude of unity and directed in the positive directions of the axes.



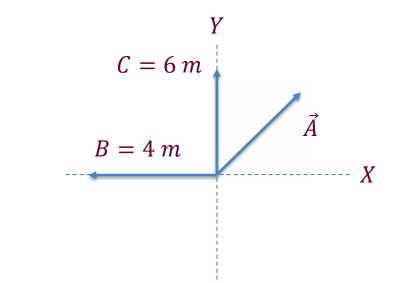
University of Jeddah

Unit Vectors

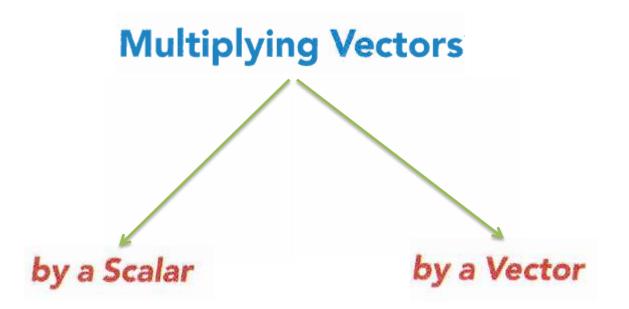
Example 6:

In figure, if $\vec{A} + \vec{B} - \vec{C} = 4\hat{i}$ then the vector \vec{A} in unit vector notation is:

Solution: (A) $4\hat{i} + 2\hat{j}$ (B) $9\hat{i} + 4\hat{j}$ (C) $8\hat{i} + 6\hat{j}$ (D) $5\hat{i} + 4\hat{j}$



Multiplying Vectors



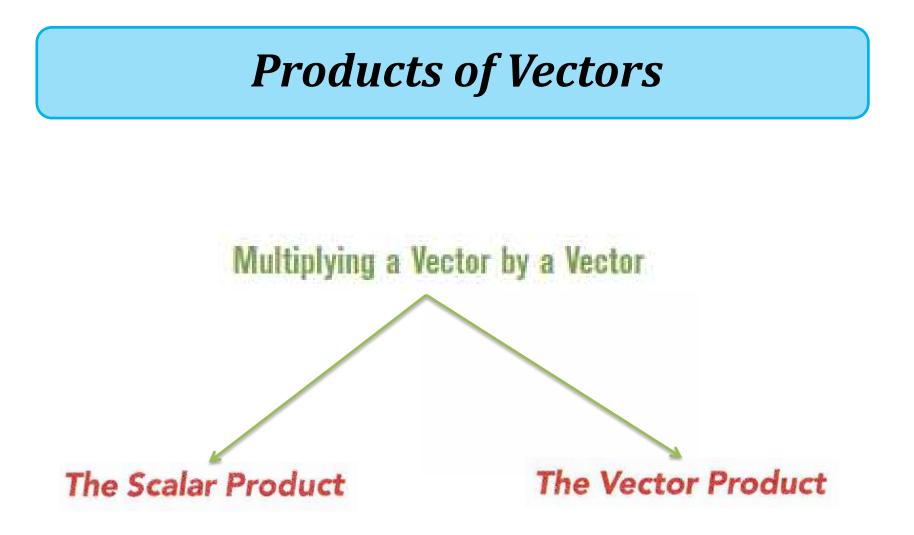
Multiplying Vector by a Scalar

- If we multiply a vector \vec{a} by a scalar *s*, we get a new vector.
- Its magnitude is the product of the magnitude of \vec{a} and the absolute value of s.

s a

Its direction is the direction of \vec{a} if s is positive but the opposite direction if s is negative.

To divide \vec{a} by *s*, we multiply \vec{a} by 1/s.



The Scalar Product

$$\vec{a} \cdot \vec{b} = ab \cos \phi,$$
$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

$$\vec{a} \cdot \vec{b} = (a_x \hat{i} + a_y \hat{j} + a_z \hat{k}) \cdot (b_x \hat{i} + b_y \hat{j} + b_z \hat{k}),$$

$$\vec{a}\cdot\vec{b}=a_xb_x+a_yb_y+a_zb_z.$$

Example 6:

Given $\vec{A} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{B} = 2\hat{i} - 3\hat{j} + 4\hat{k}$, then $(\vec{A} \cdot \vec{B})$ is:

Solution:

(C)

```
(A) 3\hat{i} + 4\hat{j} - 5\hat{k}
(B) 40
(C) 8
(D) \hat{i} + \hat{j} - 5\hat{k}
```


Example 7:

Given $\vec{A} = 2\hat{i} + \hat{j} + 3\hat{k}$, $\vec{B} = 2\hat{i} - 6\hat{j} + 7\hat{k}$, $\vec{C} = 2\hat{i} - \hat{j} + 4\hat{k}$ then the vector $\vec{D} = 2\vec{A} + \vec{B} - \vec{C}$ is:

Solution:

(D)

(A)
$$-\hat{i} - 2\hat{j} + 3\hat{k}$$

(B) $3\hat{i} + 2\hat{j} - 5\hat{k}$
(C) $3.5\hat{i}$
(D) $4\hat{i} - 3\hat{j} + 9\hat{k}$

Example 8:

Refer to Example 7, the angle between the vector \vec{A} and the positive z-axis is:

Solution:

(B)

(A) Zero
(B) 36.7°
(C) 180°
(D) 315°

Example 9:

The result of $\hat{i} \cdot \hat{j}$ is:

Solution:

(A**)**

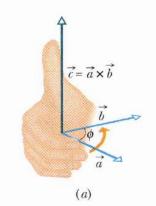
(A) Zero (B)î (C) k (D) ĵ

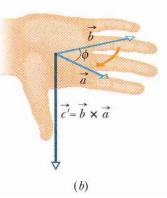
The Vector Product

$$c = ab\sin\phi$$
,

$$\vec{b} \times \vec{a} = -(\vec{a} \times \vec{b}).$$

$$\vec{a} \times \vec{b} = (a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{j}} + a_z \hat{\mathbf{k}}) \times (b_x \hat{\mathbf{i}} + b_y \hat{\mathbf{j}} + b_z \hat{\mathbf{k}}),$$
$$\vec{a} \times \vec{b} = (a_y b_z - b_y a_z)\hat{\mathbf{i}} + (a_z b_x - b_z a_x)\hat{\mathbf{j}} + (a_x b_y - b_x a_y)\hat{\mathbf{k}}$$





Physics Department

University of Jeddah

Example 10:

If \vec{A} and \vec{B} are vectors with magnitudes 5 and 4 respectively, and the magnitude of their cross product is 17.32, then the angle between \vec{A} and \vec{B} is:

Solution:

(C)

Example 11:

Given that $\vec{A} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{B} = 2\hat{i} - \hat{j} + 4\hat{k}$, then $(\vec{A} \times \vec{B})$ is:

Solution:

(A)

(A)
$$11\hat{i} + 2\hat{j} - 5\hat{k}$$

(B) $-\hat{i} - 2 + 3\hat{k}$
(C) $3.5\hat{i}$
(D) $\hat{i} + 2\hat{j} - 5\hat{k}$

Example 12:

If $\vec{A} \times \vec{B} = 0$, the angle between the vectors \vec{A} and \vec{B} is: (Hint: \vec{A} and \vec{B} are non-zero vectors)

Solution:

(D)

(A)270° (B)90° (C)45° (D)Zero

Example 13:

The result of $(\hat{i} \times \hat{j}) \cdot \hat{j}$ is:

Solution:

(D)

(A) î
(B) ĵ
(C) k
(D) Zero

Example 14:

The result of $(\hat{i} \times \hat{j}) \times \hat{i}$ is:

Solution:

(B)

(A) Zero
(B) ĵ
(C) k
(D) 1

